
Forces at the roller guide

F_x: Force in feed direction

Fy : Force in Y direction

F_z: Force in Z direction

 M_{x} : Moment for longitudinal axis (X)

My : Moment for lateral axis (Y)Mz : Moment for vertical axis (Z)

F_r: Force on the roller

ly : Guiding distance in y direction (see Table on page TL11)

l_{x1} : Guiding distance in x direction (see Table on page TL11)

l_{x2}: Guiding distance in x direction (see Table on page TL11)

Direction of force F_v

F_y shared by 2 rollers

 $\underline{\text{Direction of force } F_z}$

+Fz and -Fz shared by 4 rollers

Moment M_x

Mx shared by 2 rollers

Moment M_V

My shared by 2 rollers

Moment Mz

Mz shared by 1 roller

 $\mathbf{F_r} = \mathbf{F_v} \cdot 0.5$

 $\mathbf{F_r} = \mathbf{F_z} \cdot 0.25$

 $\mathbf{F_r} = M_x / I_y \cdot 0.5$

 $F_r = M_v / I_{x2} \cdot 0.5$

 $\mathbf{F_r} = M_z / I_{x1} \cdot 1$

Forces at the single rail guide

F_x : Force in feed direction

Fy: Force in Y direction

F_z: Force in Z direction

 M_x : Moment for longitudinal axis (X)

 M_y : Moment for lateral axis (Y)

M_z: Moment for vertical axis (Z)

 M_{t} : Permissible dynamic moment

for the guide carriage

(see Table on page TL12)

C : Dynamic load rating (C_{dyn}) for the guide carriage

(see Table on page TL12)

F_s: Force on a carriage

 I_{x1} : Guiding distance in x direction

(see Table on page TL12)

Direction of force F_V

Fy shared by 2 carriages

Direction of force Fz

Fz shared by 2 carriages

Moment M_x

 M_x shared by 2 carriages With combined external load (F_z and F_y) in combination with a torsional moment

Moment My

M_y shared by 2 carriages (with opposite direction of force)

Moment Mz

M_z shared by 2 carriages (with opposite direction of force)

$$F_s = F_y \cdot 0.5$$


$$\mathbf{F_s} = \mathbf{F_z} \cdot 0.5$$

$$F_s = |F_z| + |F_y| + C \cdot (|M_x| / M_t) \cdot 0.5$$

$$F_s = M_y / I_{x1} \cdot 1$$

$$F_s = M_z / I_{x1} \cdot 1$$

Forces at the double rail guide

 F_x : Force in feed direction

Fy : Force in Y directionFz : Force in Z direction

 $\mathbf{M}_{\mathbf{X}}$: Moment for longitudinal axis (X)

My : Moment for lateral axis (Y)Mz : Moment for vertical axis (Z)

F_s: Force on a carriage

ly : Guiding distance in y direction (see Table on page TL12)

l_{x1} : Guiding distance in x direction (see Table on page TL12)

Direction of force Fy

F_y shared by 4 carriages

Direction of force Fz

Fz shared by 4 carriages

Moment M_x

M_x shared by 4 carriages (2 per opposite direction of force)

Moment M_y

M_y shared by 4 carriages (2 per opposite direction of force)

Moment Mz

M_z shared by 4 carriages (2 per opposite direction of force)

$$F_s = F_y \cdot 0.25$$

$$\mathbf{F_s} = \mathbf{F_z} \cdot 0.25$$

$$F_s = M_x / I_v \cdot 0.5$$

$$F_s = M_y / I_{x1} \cdot 0.5$$

$$F_s = M_z / I_{x1} \cdot 0.5$$