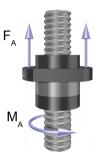
Efficiency and torque

The efficiency depends on many operating influences, as well as the geometrical values. In practice therefore the actual values may vary by ± 5 % from the theoretically determined values.


Conversion of a rotary movement into a longitudinal movement:

Efficiency η

$$\eta = \frac{\tan \phi}{\tan(\phi + \rho)} \qquad \text{with} \qquad \tan \phi = \frac{P_0}{d_0 \cdot \pi}$$

Drive torque M

$$\mathsf{M}_{\mathsf{A}} \!\!=\! \frac{\mathsf{F}_{\mathsf{A}} \!\cdot\! \mathsf{P}_{0}}{2000 \!\cdot\! \pi \!\cdot\! \eta}$$

Conversion of a longitudinal movement into a rotary movement:

Efficiency η'

$$\eta' \!=\! \frac{tan(\varphi \!-\! \rho)}{tan\,\varphi} \qquad \text{with} \qquad tan\,\varphi \!=\! \frac{\mathsf{P}_0}{\mathsf{d}_0 \!\cdot\! \pi}$$

Output torque M_a

$$M_a = \frac{F_a \cdot P_0 \cdot \eta'}{2000 \cdot \pi}$$

η, η	'	Efficiency of the ball screw	
ρ		Friction angle	[°]
		(0.34° for tolerance classes T5 + T7)	
Φ		Pitch angle	[°]
P_0		Nominal pitch of the ball screw	[mm]
d_0		Nominal diameter of the ball screw	[mm]
		Drive torque	[Nm]
M_{a}		Output torque	[Nm]
$F_{_{A}}$		Result axial force	[N]
F.		Effective axial force	[N]