

Original Assembly and Maintenance Manual

Linear Unit

13-betg

Types

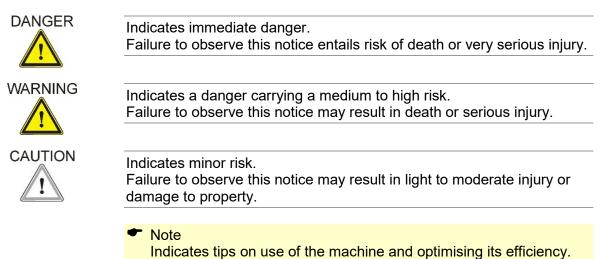
Beta 50-C-ARS Beta 70-C-ARS Beta 70-C-ASS Beta 80-ARS Beta 80-ASS Beta 80-C-ARS Beta 80-C-ASS Beta 100-D-ASS Beta 110-ARS Beta 110-ASS Beta 140-ARS Beta 140-ASS Beta 140-C-ASS Beta 180-ASS Beta 180-C-ASS Beta 180-AZSS

> HSB Automation GmbH In Laisen 74 72766 Reutlingen Germany Tel. +49 7121 14498-0 Fax +49 7121 14498-10 Info@HSB-Automation.de www.HSB-Automation.de

Contents

1	Safe	ty		2
	1.1	Symbols	used	2
	1.2	Regulatio	on use	2
	1.3	General	safety	
	1.5	Use in ex	plosive areas	
	1.6	Technica	I condition of the linear unit	
	1.7	Modificat	ions to the linear unit	4
	1.8	Requiren	nents for personnel	4
	1.9	Respons	ibilities of the operator	4
2	Warı	anty		5
3	Tech	nical dat	ta – Standard model	6
4	Prod	luct desc	ription	11
5	Tran	sportatio	on and storage	13
6	Insta	Ilation a	nd adjustment	14
	6.1	Attaching	the load on the linear unit base profile	14
	6.2	Setting m	naximum travel	15
		6.2.1	Setting the positions of the inductive limit switches	16
		6.2.2	Setting the positions of the mechanical limit switches	17
	6.3	Mounting	a drive unit	
		6.3.1	Mounting a motor	19
7	Star	t-up		21
8	Ореі	ration		22
9	Shuf	down		
	Unia			
10				
10		itenance	on	24

1 Safety


The Assembly and Maintenance Manual is a component element of the product package, and must always be kept to hand as a reference source.

The Manual must be passed on if the unit is sold on or given away.

If there is anything in this manual which you do not fully understand, please be sure to contact the manufacturers.

1.1 Symbols used

This Assembly and Maintenance Manual employs the following symbols to indicate hazards as well as other types of symbol:

1.2 Regulation use

The mechanical linear unit is intended for installation in machines, and is used solely for manipulating, positioning, transporting, palletising, loading, unloading, clamping, clocking, tensioning, testing, measuring, handling and pushing workpieces or tools.

Pay attention to the basic applications of the linear unit set out in sections 4 and 3.

In order to comply with the EU Directive governing Electromagnetic Compatibility (EMC), the mechanical linear unit may only be used in industrial environments.

Any other use, or use for purposes beyond those stipulated, will be classed as illegitimate. The manufacturers accept no liability for any loss thereby incurred. The risk is borne solely by the operators.

1.3 General safety

Preconditions for operation	The linear unit must not be put into operation until the machine or line into which it is installed conforms to the following:
	EC/EU directives
	Standards governing the electromagnetic compatibility of machinery
Safe operation	To ensure safe operation, refer to the following documents:
	This operating manual for the linear unit, particularly the technical data
	The operating manual for the line into which it is installed
Decommissioning	Dispose of the product in accordance with the applicable national requirements. Observe the safety data sheets.

1.4 Use in clean rooms (ISO 14644)

The linear units used in clean rooms are fitted with a vent hole (generally G1/4") at the basic profile.

The following guidelines must be observed:

• The linear unit must be subjected to a negative pressure of 0.2 bar.

The linear unit must be relubricated with a grease suitable for use in clean rooms (basic lubrication carried out using Klübersynth BEM 32-34).

1.5 Use in explosive areas

The linear units are suitable for use in explosive atmospheres in zones according to their ATEX marking. In addition to these assembly and maintenance instructions, the document "FM_319_Use-in-Atex-zones-MuW" must also be observed.

1.6 Technical condition of the linear unit

State of the artThe unit conforms to the current state of the art and applicable rules
and regulations. The device complies with the EC Machinery Directive
and the relevant Harmonised Standards (European standards).
Furthermore, the EC Declaration of Incorporation applies.

1.7 Modifications to the linear unit

Modifications The linear unit must not be modified, either in its basic design or in its safety components, without our written consent. Any such unauthorised modification will void our liability in respect of the unit.

The operating company may only carry out the maintenance and repair work detailed in this operating manual. Any other measures, such as to replace wearing parts and components, may be carried out only in consultation with our service engineers, by the service engineers themselves, or by us directly.

Installed safety devices must never be dismantled or disabled. When fitting special attachments to the unit, follow the fitting instructions provided by the manufacturers!

1.8 Requirements for personnel

Work on parts carrying live electrical current may be carried out only by trained electricians. Such work includes:

- Installing safety limit switches
- Mounting a drive unit
- Checking the direction of rotation of the drive

1.9 Responsibilities of the operator

Preservation of labels	The operator must ensure that any lettering, information signs or labels are fully legible (in particular the serial number) and always observed. Any damaged or illegible information signs and labels must be replaced.
Accident Prevention and Environmental Protection	The applicable regulations for accident prevention and environmental protection must be observed.
Disposal	Dispose of the product according to the relevant national regulations. Refer to the safety data sheets.

2 Warranty

The warranty conditions are laid down in the terms and conditions of delivery and payment issued at time of order. Warranty cover will be voided if:

- the unit is not operated in accordance with the stipulated regulation use;
- the instructions set out in this operating manual are not followed;
- the unit is modified without the consent of the manufacturers;
- screws sealed by locking varnish are unlocked.

The manufacturer's warranty in respect of maintenance and repair work applies only if original replacement parts are used.

3 Technical data – Standard model

Technical data - Linear unit					Si	zes				
Type Beta with driven base profile	Beta 50-C Beta 70-C		Beta 80		Beta 80-C		Beta 100-D	Beta	110	
	ARS	ARS	ASS	ARS	ASS	ARS	ASS	ASS	ARS	ASS
Drive element	Tim.b.	Timin	g belt	Timin	g belt	Timin	g belt	Timing belt	Timin	g belt
Stroke per revolution [mm]	110	22	20	22	20	22	20	240	30	00
Velocity max. [m/s]	3	ų	5	8	5	8	5	5	8	5
Acceleration max. [m/s ²]	30 30 40		0	4	0	60	6	0		
No-load torque [Nm]	1.5		1	1	.5	1	.8	2.5	3.5	
Maximum travel (standard) [mm]	8710	76	40	75	90	75	90	7680	7440	
Repeat accuracy [mm]	±0.08	±0	.08	±0.08		±0.08		±0.08	±0	.08
Operating temperature [°C] (continuous operation)	080	0	.80	0	.80	080		080	0	.80
Geometrical moment of inertia I _Y [mm ⁴]	218215	571511	550972	1249914	1344513	128223 7	134017 6	866002	4606244	4574091
Geometrical moment of inertia I _Z [mm ⁴]	291268	849668	850117	1701733	1673177	175608 6	176702 9	2309819	5973805	5928713
Length of standard carriage drive [mm]	140	22	20	20	60	26	60	260	40	00
Weight (without travel) [kg]	3.1	7.5	7.9	10.5	11.5	10.8	12,1	14	29	29
Weight (per 100 mm travel) [kg]	0.3	0.38	0.6	0.6	0.85	0.63	0,96	0,9	1,4	1,4
Weight of standard carriage [kg]	2.8	5.0	5.5	6.1	6.2	6.3	6,3	8,6	16	16
Noise emission max. [dB A] ¹⁾	75	7	5	7	5	75		75	7	5

¹⁾ The figure will vary based on assembly with other system components

Technical data - Linear unit		Sizes							
Type Beta with driven base profile	Beta	a 140	Beta 140-C	Beta 180	Beta 180-C				
	ARS	ASS	ASS	ASS	ASS				
Drive element	Timin	ig belt	Timing belt	Timing belt	Timing belt				
Stroke per revolution [mm]	24	40	240	320	320				
Velocity max. [m/s]	8	5	5.00	5.00	5,00				
Acceleration max. [m/s²]	6	60	60	60	60				
No-load torque [Nm]	3	.5	3.50	2.50	8.00				
Maximum travel (standard) [mm]	74	40	7470	7470	7470				
Repeat accuracy [mm]	±0	.08	±0.08	±0.08	±0.08				
Operating temperature [°C] (continuous operation)	0	.80	080	080	080				
Geometrical moment of inertia I _Y [mm ⁴]	305	0005	3001698	8803627	8797644				
Geometrical moment of inertia Iz [mm ⁴]	9074	4893	9002193	24113649	23993629				
Length of standard carriage drive [mm]	3	80	380	400	400				
Weight (without travel) [kg]	28	30	30.00	48.90	51,50				
Weight (per 100 mm travel) [kg]	1.2	1.5	1.50	2.80	3,60				
Weight of standard carriage with carriage [kg]	13	14	14.00	25.60	27,35				
Noise emission max. [dB A] ¹⁾	7	'5	75	75	75				

¹⁾ The figure will vary based on assembly with other system components

Dynamic load ratings of rail guides - Beta linear unit

Model	Size	Number of rails	Number of carriages	Load rating per carriage C _{dyn} [N] THK / Rex*	Preten-sion Fv THK / Rex*	[N]	Guide spacing in direction x (lx1) [mm]	
Beta 70-C-ASS	15	1	2	11271 / 9860	564 / 620	60 / 74	164	-
Beta 80-ASS	20	1	2	17700 / 23400	885 / 1500	210 / 240	184	-
Beta 80-C-ASS	25	1	2	25160 / 28600	1258 / 1820	340 / 320	172	-
Beta 100-D-ASS	15	2	4	11271 / 9860	564 / 620	-	192	56
Beta 110-ASS	25	1	2	25160 / 28600	1258 / 1820	340 / 320	315	-
Beta 140-ASS	15	2	4	11271 / 9860	564 / 620	-	242 (322)	72
Beta 140-C-ASS	20	2	4	17700 / 23400	885 / 1500	-	220 (300)	76
Beta 180-AZSS	20	2	8	17700 / 23400	885 / 1500	-	430	84
Beta 180-ASS	20	2	4	17700 / 23400	885 / 1500	-	310	84
Beta 180-C-ASS	25	2	4	25160 / 28600	1258 / 1820	-	307	84

Figures in () relate to the long carriage

The load rating and pre-tension figures relate to the standard linear guidance system with recirculating linear ball bearings * Rex = Rexroth

Sizes	Size(Ø) [mm]	Number of carrying rollers for	Number of carrying rollers for	Tragzahl pro Rolle C _{stat} [N]	Load rating per roll C _{dyn} [N]	Guide distance in direction x [mm]		Guide distance in direction y [mm]
		Fz	Fy			lx1	lx2	ly
Beta 50-C-ARS	20	4	2	600	1500	82	81	30.5
Beta 70-C-ARS	20	4	2	600	1500	120	182	41.5
Beta 80-ARS	20	4	2	600	1500	155	216.5	42.5
Beta 80-C-ARS	24	4-	- 2	1240 2300	2750 4200	- 135	208.5 -	42.4
Beta 110-ARS	28	4	2	1300	3200	253	340	66
Beta 140-ARS	35	4	2	3000	6800	192 (272)	192 (272)	98

Static and dynamic load ratings of the roller guides linear - Beta linear unit

The pre-tensioning per roll is approx. 5%

	+Fx +Mx	
+Mz +Fz	+My +Fy	

Forces and moments - Beta linear unit with timing belt drive

.12										
Type designation	C	Dynamic	forces [N	4]	Dyr	Dynamic moments [Nm]				
	Fx	F _Y	Fz	-Fz	Mx	MY	Mz	M _{no-load}		
Beta 50-C-ARS	700	300	600	400	30	50	50	1.50		
Beta 70-C-ARS	900	300	1000	400	35	120	50	1.00		
Beta 70-C-ASS	900	600	1800	1200	60	180	120	1.20		
Beta 80-ARS	1000	500	1500	800	50	180	100	1.50		
Beta 80-ASS	1000	800	3000	2000	100	250	250	1.50		
Beta 80-C-ARS	1300	1000	2500	1500	100	300	180	1.80		
Beta 80-C-ASS	1300	1600	4000	3000	300	500	500	1.80		
Beta 100-D-ASS	2200	1800	4000	3000	350	950	950	2.50		
Beta 110-ARS	2000	2000	5000	2500	300	600	450	3.50		
Beta 110-ASS	2000	3000	8000	4000	400	800	600	3.50		
Beta 140-ARS	2500	2500	5000	3000	350	700	700	4.50		
Beta 140-ASS	2500	2500	6000	4000	500	1000	1000	4.50		
Beta 180-ASS	3500	6000	12000	6000	1500	3000	1500	8.00		
Beta 180-AZSS	4500	8000	16000	8000	2000	4000	2000	10.00		
Beta 180-C-ASS	3500	8000	15000	8000	1800	3600	1800	8.00		

Figures in () relate to the long carriage.

 $M_{no-load} = No-load torque \pm 30\%$

The forces and moments quoted are maximum values for the single load. In the event of combined loading or simultaneous occurrence of multiple moments or forces, the individual values must be reduced. In case of doubt consult Technical Support.

	Tightening torques [Nm] for fixing screws														
Fixing screws	M4	M5	M6	M8	M10	M12	The figures given are intended as								
DIN912/ISO4762-8.8	2,7	5,4	9,0	22,0	43,0	74,0	guides. For shorter insertion depths, the								
DIN912/ISO4762-10.9	3,0	5,7	9,0	22,0	43,0	74,0	figures must be adjusted accordingly.								
DIN912/ISO4762-12.9	3,0	5,7	9,0	22,0	43,0	74,0									

Tightening torques [Nm] for clutch with clamping hub										
Size 14 19 24 28 38										
Clutch diameter [mm]	30	40	55	65	80					
Screw size	M3	M6	M6	M8	M8					
Tightening torque [Nm]	1,34	10,50	10,50	25,00	25,00					

Tightening torques [Nm] for clutch with clamping ring hub										
Size 14 19 24 28 38										
Clutch diameter [mm]	30	40	55	65	80					
Screw size	M3	M4	M5	M5	M6					
Tightening torque [Nm]	1,34	2,90	6,00	6,00	10,00					

4 **Product description**

Linear unit with timing belt drive and linear guide

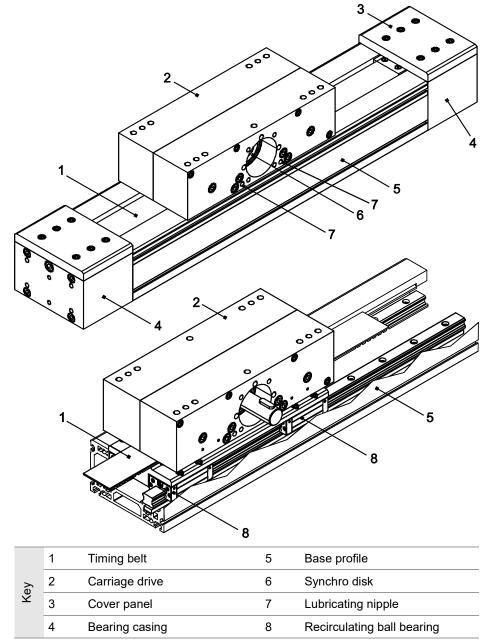


Figure 1: Component assemblies of the Beta 140-ASS linear unit with timing belt drive

Linear unit with

roller guide

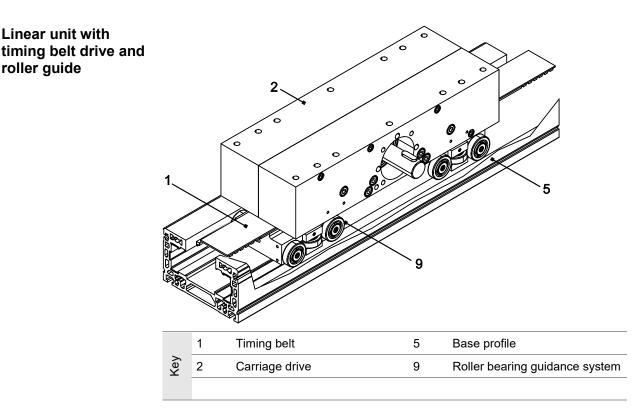


Figure 2: Component assemblies of the Beta 140-ARS linear unit with timing belt drive

A mechanical linear unit converts rotational motion into linear motion and is used to move loads quickly, safely and precisely from one position to another.

The Beta xx-AxS version consists of a mobile aluminium base profile, a carriage drive supported by a guide element (recirculating ball bearing or roller bearing guidance system) and a drive element (rack or timing belt drive).

The carriage drive is permanently fixed. The base profile carries the load, and can be moved in and out of the working area like a telescopic arm.

Optionally, the linear unit can be fitted with electronic limit switches and electromechanical safety limit switches (see section 6.2).

The effective range can be flexibly configured. Linear units of type Beta xx-AxS in combination with standard linear units of type Beta xx-ZxS or -SxS may be arranged two-dimensionally (2 axes) or threedimensionally (3 axes.

Driven linear units can be connected to non-driven units of the same type by a plate, to be able to take large-area loads for example.

5 Transportation and storage

The mechanical linear unit is a precision item. Its mechanism may be damaged by heavy jolting, resulting in impairment of its functions.

Risk of damage by heavy jolting or bending! Transport the assembled linear unit only with the transit protection fitted.

To prevent damage during transportation and storage, protect the linear unit against shaking and sliding as follows:

- Stow it in a box of sufficient size.
- Use packing.

Section 3 lists the unit weights.

Protect the unit against:

- dirt;
- corrosion;
- water;
- and aggressive atmospheres.

6 Installation and adjustment

The carriage drive of the linear unit can be attached by way of the tapped and through holes on the top and sides of the bearing casing.

6.1 Attaching the load on the linear unit base profile

Attachment options The load can be attached on the base profile by the following methods (Figure 3):

- By way of the tapped holes on both front faces
- By way of tapped hole rails
- By way of sliding blocks
- By way of the T-slot on the underside

Sliding blocks

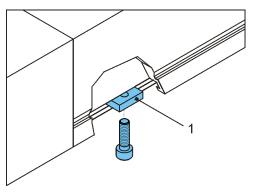


Figure 3: Sliding blocks (1) in the groove on the underside of the base profile

Procedure

- 1. Align the linear unit.
- **2.** Align the sliding blocks (1).
- **3.** Tighten the load (for tightening torques see section 3).

Install the linear unit on a flat surface. Unit parallelism < 0.2 mm/ 1,000 mm.

Mounting rails

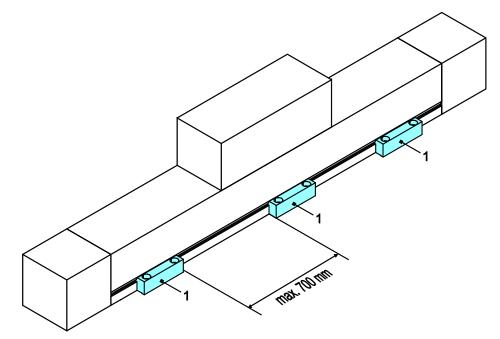


Figure 4: Mounting rails (1)

 The recommended maximum spacing between the mounting rails is 700 mm.

1. Attach the mounting rails (1) loosely in position (Figure 4).

- **2.** Align the linear unit axially.
- **3.** Tighten the mounting rails (1) (for tightening torques see section 3).

6.2 Setting maximum travel

Serious injury may result if the transport carriers topple over. If the base profile moves to its full extent beyond the safety zone, the transport carrier mounted on it may break away or topple over. The linear unit may be destroyed During setup, observe the specified safety zone and set the limit switches accordingly. Electrical switches may only be connected by qualified electricians.

 To stop the base profile promptly in the event of an emergency stop, allow for adequate braking distance.

6.2.1 Setting the positions of the inductive limit switches

The function of inductive proximity switches is to shut down the electric drive before the mechanical end position is reached.

The necessary braking distance (Δ B) depends on the velocity and deceleration of the carriage. The braking distance must be between the switching point of the proximity switch and the actual mechanical end position.

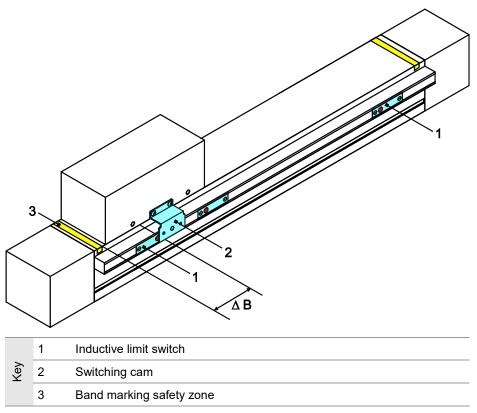


Figure 5: Inductive limit switches

Procedure

The limit switches must switch so that the base profile comes to a stop immediately before the safety zone. The safety zone is factory-marked on the unit by a band (3).

- **1.** Connect the power to the limit switches.
- 2. Slacken the limit switch fixing screws.
- **3.** Run the base profile as far as the braking position.
- **4.** Move the limit switch (NC contact) under the switching cam until it trips and the LED on the sensor goes out.
- **5.** Move the base profile away.
- 6. Tighten the limit switch.
- **7.** Check the correct position of the limit switch: Move the base profile manually and observe the switching operation.
- **8.** Fit the limit switch array covering.

6.2.2 Setting the positions of the mechanical limit switches

Mechanical safety limit switches (NC contacts) must be used if a hazard is posed to personnel as soon as the electric drive fails to shut down.

The drive may only be started up when all limit switches are connected and correctly set!

A combination with inductive proximity switches is possible.

External shock-absorbers must be fitted to protect against mechanical destruction.

The necessary braking distance (Δ B) depends on the velocity and deceleration of the carriage. The braking distance must be between the switching point of the limit switch and the actual mechanical end position (Figure 6).

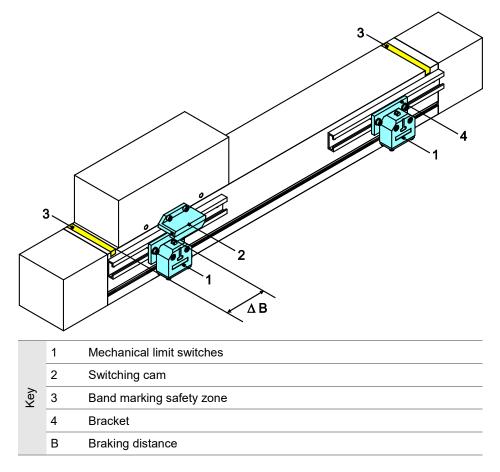


Figure 6: Mechanical limit switches

Procedure

The limit switches must switch so that the base profile comes to a stop immediately before the safety zone. The safety zone is factory-marked on the unit by a band (3).

- 1. Connect the power to the limit switches.
- 2. Slacken the bracket fixing screw (Figure 6).
- **3.** Run the base profile as far as the safety zone.
- 4. Move the limit switch until it trips.
- **5.** Tighten the bracket fixing screw.
- Check the correct position of the limit switch: Move the base profile manually and observe the switching operation.
 If the braking distance is too short, repeat the set-up.

6.3 Mounting a drive unit

Make sure the direction of rotation of the external drive unit takes into account the direction of the spindle or timing belt so that the limit switches work correctly.

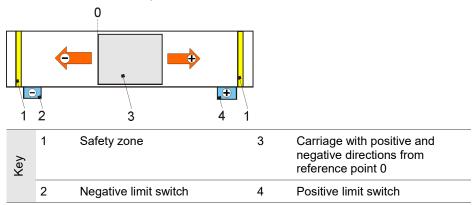


Figure 7: Example of travel direction and limit switch configuration

6.3.1 Mounting a motor

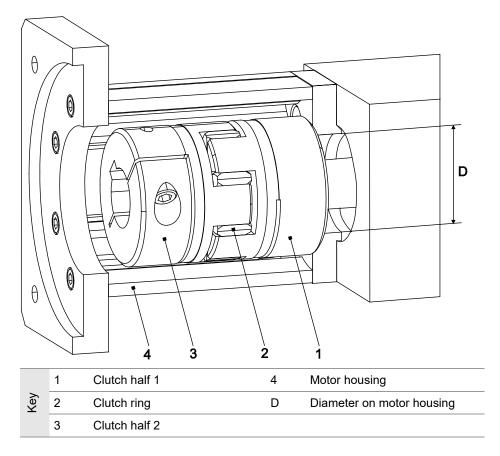


Figure 8: Motor housing with motor clutch on drive pin

- Procedure
- **1.** Place the motor and the clutch components in mounting position adjacent to the linear unit.
- **2.** Check the direction of rotation of the motor. It must take into account the safety limit switches (Figure 7). Alter the direction of the motor as necessary.
- If the clutch diameter is less than the measure D on the motor housing (4), first mount clutch half 1 (1) (hole flush with drive shaft) and then the motor housing (4) (Figure 8).

If the clutch diameter is greater than the measure D on the motor housing (4), first mount the motor housing (4) and then the clutch half 1 (1) (hole flush with drive shaft). Tighten the clutch clamping screw through the mounting hole on the motor housing (4).

- **4.** Slot the clutch ring (2) onto the clutch.
- **5.** Mount clutch half 2 (3) on the motor pin.
- **6.** Mount the motor on the motor housing.

Screw	SW	Torque
M6	5	14
M8	6	35
M10	8	65
M12	10	74

Tightening torque [Nm] of clamping screws

7 Start-up

WARNING	Risk of personal injury or damage to other system components caused by rapid linear motion of the transport carrier, caused by thrown loads. Only authorised specialist personnel may start up the linear unit.					
DANGER	Risk of crushing due to incorrect direction of movement of the transport devices. Should the direction of rotation of the drive (motor or gear) and the sliding carriage drive (spindle or toothed belt) not correspond, the mounted transport devices may travel in the wrong direction. Around all rotating parts, e.g. GX shaft and around the toothed belt (when used without cover band), there is a risk of being pulled in, and of clothing or body parts being caught up and trapped. There is also a risk of crushing around the moving carriage. These hazards can be countered by installing effective safety mechanisms that comply with the current standards and are state-of-the-art. These are not supplied with the linear unit and must be installed by the manufacturer of the overall installation. Use of the deflection belt drive without the protective hood supplied is not permitted. Only qualified electricians may carry out the electrical installation and check the direction of rotation.					
Checks before start-	Before starting the unit, check the following:					
up	 Make sure the retaining fixtures conform to the mass and acceleration data provided by the manufacturers. 					
	 Make sure the machine or line into which the linear unit is installed conforms to the EU Machinery Directive, the harmonised European standards or applicable national standards. 					
	Make sure the linear unit is correctly installed.					
	 Make sure the inductive and/or mechanical limit switches are correctly connected and working properly. 					
	 Make sure the direction of rotation of the motor shaft and - where appropriate - of the interposed gearbox - matches that of the timing belt. 					
	If the checks reveal any defects, prohibit start-up of the unit.					
Trial run	To prevent accidents, collisions and possible errors in the programming, move the linear unit along the stroke several times at such a low speed that it can be stopped in good time in case of an emergency.					
	The line may be started up once it has been established that there is no risk of collision when the maximum travel is overrun.					

8 Operation

WARNING	The drive motor can heat up considerably during operation. In this case, refer to the operating instructions supplied for the drive motor.
	Risk of damage from harmful environmental influences! Operate the linear unit only under the ambient conditions approved by the manufacturers.
Ambient conditions	The linear unit may only be operated within the permitted temperature range of 0 - 80 °C.
	Operating the unit in damp, abrasive conditions may result in foreign objects entering components in the linear unit. To prevent this, as part of the integration of the linear unit into the entire plant, measures may need to be taken to prevent foreign bodies from penetrating, e.g. using folding plates, baffle plates, sealing air.
Duty of inspection	The proper functioning of the linear unit must be checked periodically during operation.
	The responsible personnel must check the linear unit and the line for external signs of damage and defects at least once every shift.
	If changes occur which are detrimental to safety, shut down the line immediately.
Emergency stop	The maximum permissible load values must not be exceeded even in an emergency stop situation.
	As a rule, the category 1 emergency stop strategy (targeted braking to standstill, then de-energise) is chosen for automation equipment with moving masses. A simple emergency stop strategy is not usually effective, as the masses are still moving and can cause damage.
End position damping	The end stops and stop buffers installed in our linear modules protect the unit at low speed (commissioning). They are definitely not intended to completely protect the unit against damage at high speed and/or with a large mass.

9 Shutdown

Risk of personal injury or damage to other system components caused by falling system components. Only authorised specialist personnel may disassemble the linear unit.

- **1.** Cut the power to the machine/line.
- **2.** Dismantle the drive from the linear unit.
- **3.** Detach the linear unit from the machine/line.

10 Maintenance

Around all rotating parts, e.g. GX shaft and around the toothed belt (when used without cover band), there is a risk of being pulled in, and of clothing or body parts being caught up and trapped. There is also a risk of crushing around the moving carriage.

For this reason, lubrication of the linear unit may only be carried out while it is moving slowly (max. 0.025 m/s), and for any cleaning work the linear unit drive must be shut down and secured against being restarted.

- All installed ball bearings are sealed and maintenance-free.
- Remove excessive dust and dirt from the components of the linear unit on a regular basis.
- The timing belt is maintenance-free. If the timing belt rips or is stretched beyond its elastic range, replace it.

10.1 Lubrication

The following factors are key to determining the exact lubrication Influencing factors intervals required:

- Loading
- Velocity
- Motion
- Operating temperature
- Degree of dirtying •

Short lubrication Short lubrication intervals are required for: intervals

- operation under the influence of dust and dampness
- a heavy load •
- high speed (up to V_{max}) •

Short strokes Short stroke refers to a stroke with a value equal to or lower than that specified in the table. To achieve the best possible lubrication, (Short stroke design) relubrication should be carried out from both sides with guiding carriage short strokes and thus requires a special attachment. (Design feasibility must be checked.)

A lubrication stroke should also be carried out at least once per shift (8 hours) where possible.

Größe	12	15	20	25	25L	30	30L	35	35L
ТНК	40	95	120	140	175	160	210	185	250
Bosch-Rex.	40	80	100	115	160	135	180	155	210
Lubrication stroke	70	130	160	180	220	210	260	240	300

Initial lubrication

Carry out an initial lubrication after starting up the unit for the first time. A basic lubrication was applied at the factory.

Refer to the lubrication regulations on the following pages.

Under normal operating conditions (dry environment, no dusts, etc.), Note the roller guide is lubricated for life with integrated lubricating felts.

Lubrication points on linear units

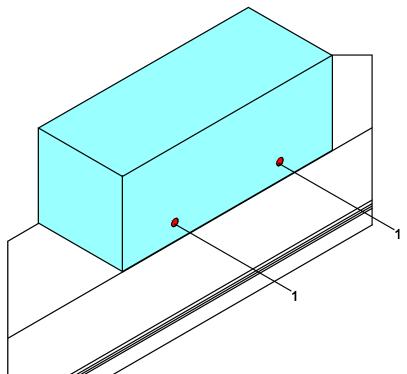


Figure 9: Possible lubrication points (1) on the carriage

The categories, quantity and positions of lubrication point depend on the model of linear unit. The categories of lubrication point are identified by the markings S, F on the unit.

There is a separate lubrication schedule for each lubrication point category.

Lubrication point category	Lubrication for	Lubricant	
S	Spindle	Grease	
F	Guide elements	Grease	

Lubrication method Lubrication should, as far as possible, take place while the unit is running, so that the grease is distributed evenly and no pressure is built up.

Lubrication interval	Grease quantity [cm³] per carriage	Grease type	
	ca. 0.4	Greases to DIN 51825-	
	ca. 0.6	KP2N-20, e.g. Klüberplex BE 31-102	
approx. 5,000 km*	ca. 1.2		
-	ca. 1.5	 If other greases are used, pay attention to 	
-	ca. 1.7	manufacturers'	
	ca. 0.8	specifications!	
approx. 2,000 km*	ca. 1.4	 Greases containing 	
	ca. 2.8	solid lubricant (e.g. graphite, MoS2) must	
	ca. 4.4	not be used!	
	ca. 4.4		
	approx. 5,000 km*	[cm³] per carriage approx. 5,000 km* ca. 0.4 ca. 0.6 ca. 1.2 ca. 1.2 ca. 1.5 ca. 1.7 ca. 0.8 ca. 1.4 ca. 2.8 ca. 4.4 ca. 4.4	

* Or at least 2 x per year. The lubrication interval depends on the ambient temperatures and on the loading (see figure 11). Relubrication "in motion"!

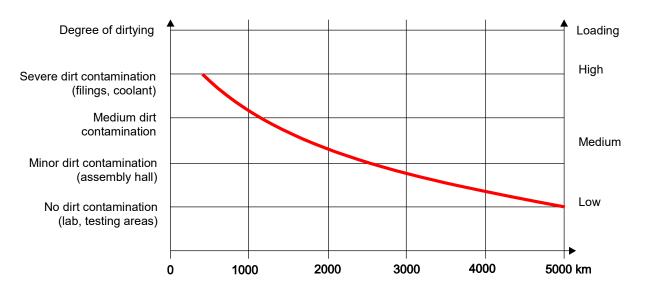
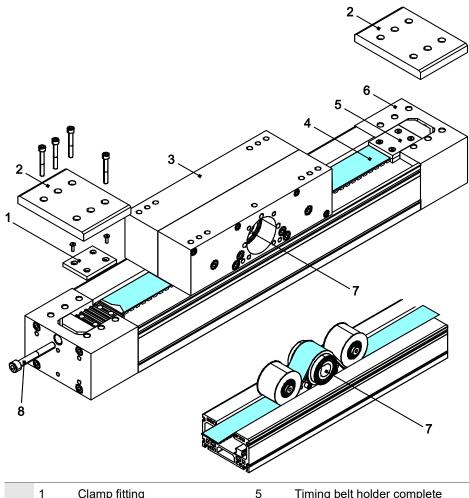



Figure 10: Relubrication intervals for the linear guidance system with recirculating linear ball bearings

10.2 Replacing the timing belt

- To preserve the optimum running of the linear unit and prevent it from being damaged during operation, take care that no foreign bodies penetrate the base profile or other linear unit components during installation and assembly.
- Do not damage the standard parts (screws, pins, etc.); they will be re-used.

1	Clamp fitting	5	Timing belt holder complete
2	Cover panel	6	Bearing casing
3	Carriage drive	7	Synchro disk
4	Timing belt	8	Clamping screw
		2 Cover panel 3 Carriage drive	2Cover panel63Carriage drive7

Figure 1 Replacing the timing belt

- 1. Unbolt the cover panels
- **2.** Slacken the clamping screws for the timing belt holders on both bearing casings
- 3. Pull the two timing belt holders out of the bearing casings.
- **4.** Unbolt the clamp fittings from the timing belt holders or detach the timing belt holders from the belt (Beta 180 only).
- **5.** Affix one end of the new timing belt by fabric tape to the end of the old timing belt to aid drawing it in.
- When sticking the two timing belts together, their toothing pitch must match, so that the new belt engages in the synchro disk.
- **6.** Grasp the other, free end of the defective timing belt and slowly draw the two belts through the carriage drive. Push the new timing belt gently to draw it in.
- 7. Mount the timing belt holders on both ends of the new timing belt.
- **8.** Insert the timing belt holders in the bearing casings and fasten them by the clamping screws, but do not tighten them. Lock the clamping screws with Loctite 243.
- **9.** Tighten the timing belt.
- **10.** Set the precise specified tension using a tension meter (see meter operating instructions).
- Only by setting the correct tension as specified can optimum running be ensured.
- **11.** The measurement position and the Hz figure applicable to the timing belt are provided along with the replacement belt. Tension the timing belt so that the specified Hz figure is indicated.